Sequential Recommendation for Food Recipes with Variable Order Markov Chain

نویسنده

  • XUECHUN XU
چکیده

One of the key tasks in the study of the recommendation system is to model the dynamics aspect of a person’s preference, i.e. to give sequential recommendations. Markov Chain (MC), which is famous for its capability of learning a transition graph, is the most popular approach to address the task. In previous work, the recommendation system attempts to model the short-term dynamics of the personal preference based on the long-term dynamics, which implies the assumption that the personal preference over a set of items remains same over time. However, in the field of food science, the study of Sensory-Specific Satiety (SSS) shows that the personal preference on food changes along time and previous meals. However, whether such changes follow certain patterns remains unclear. In this paper, a recommendation system is built based on Variable Order Markov Chain (VOMC), which is capable of modeling various lengths of sequential patterns using the suffix tree (ST) search. This recommendation system aims to understand and model the short-term dynamics aspect of the personal preference on food. To evaluate the system, a Food Diary survey is carried to collect users’ meals data over seven days. The results show that this recommendation system can give meaningful recommendations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Red Blood Cells Consumption Using Markov Decision Process

In healthcare systems, one of the important actions is related to perishable products such as red blood cells (RBCs) units that its consumption management in different periods can contribute greatly to the optimality of the system. In this paper, main goal is to enhance the ability of medical community to organize the RBCs units’ consumption in way to deliver the unit order timely with a focus ...

متن کامل

SPMC: Socially-Aware Personalized Markov Chains for Sparse Sequential Recommendation

Dealing with sparse, long-tailed datasets, and coldstart problems is always a challenge for recommender systems. These issues can partly be dealt with by making predictions not in isolation, but by leveraging information from related events; such information could include signals from social relationships or from the sequence of recent activities. Both types of additional information can be use...

متن کامل

Using Markov Chain to Analyze Production Lines Systems with Layout Constraints

There are some problems with estimating the time required for the manufacturing process of products, especially when there is a variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines need a precise planning to reduce volume in particular situation of lin...

متن کامل

A New Web Usage Mining Approach for Next Page Access Prediction

To engage users of a website at an early stage of surfing, a novel web access recommendation system is essential. In this paper, a new web usage mining approach is proposed to predict next page access. It is proposed to identify similar access patterns from web log using pair-wise nearest neighbor based clustering and then sequential pattern mining is done on these patterns to determine next pa...

متن کامل

Bayesian variable order Markov models

We present a simple, effective generalisation of variable order Markov models to full online Bayesian estimation. The mechanism used is close to that employed in context tree weighting. The main contribution is the addition of a prior, conditioned on context, on the Markov order. The resulting construction uses a simple recursion and can be updated efficiently. This allows the model to make pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018